64sin^2(4x)+64cos^2(4x)=0

Simple and best practice solution for 64sin^2(4x)+64cos^2(4x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 64sin^2(4x)+64cos^2(4x)=0 equation:


Simplifying
64sin2(4x) + 64cos2(4x) = 0

Remove parenthesis around (4x)
64in2s * 4x + 64cos2(4x) = 0

Reorder the terms for easier multiplication:
64 * 4in2s * x + 64cos2(4x) = 0

Multiply 64 * 4
256in2s * x + 64cos2(4x) = 0

Multiply in2s * x
256in2sx + 64cos2(4x) = 0

Remove parenthesis around (4x)
256in2sx + 64cos2 * 4x = 0

Reorder the terms for easier multiplication:
256in2sx + 64 * 4cos2 * x = 0

Multiply 64 * 4
256in2sx + 256cos2 * x = 0

Multiply cos2 * x
256in2sx + 256cos2x = 0

Reorder the terms:
256cos2x + 256in2sx = 0

Solving
256cos2x + 256in2sx = 0

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add '-256in2sx' to each side of the equation.
256cos2x + 256in2sx + -256in2sx = 0 + -256in2sx

Combine like terms: 256in2sx + -256in2sx = 0
256cos2x + 0 = 0 + -256in2sx
256cos2x = 0 + -256in2sx
Remove the zero:
256cos2x = -256in2sx

Divide each side by '256os2x'.
c = -1in2o-1s-1

Simplifying
c = -1in2o-1s-1

See similar equations:

| 12w^2=28+5 | | -15=-5u+8(u-3) | | 7x+2+35=14x+2 | | -11=11(h-3) | | 2/5(0.3)+3/5(0.3)= | | (2xy+2y^2+2y)dx+(2x^2+6xy+4x)dy=0 | | 7x^2=-65 | | 3x-4=-13 | | 3/6=x/7 | | 6+3=54 | | x=264.6+-2.2y | | 6x+32-8x=58 | | y=x^(-1.5)/x^(-0.5) | | 2(-9)-5(-7)=x | | 5x+11y=1323 | | y=-4(x^2)+3 | | 2w+2L=54 | | 1.3(4x+2)=5+6 | | 7s-9=-12+8s | | 5n^2-3n-10=5 | | (5x+8y)(5x+8y)=0 | | 3x=7-6y | | C^2+4c+4= | | 2y-22=-27+3y | | 2m=5m-70 | | 21x^2+181x+50=0 | | x^2-45x+10000=0 | | 14b+12=11b+192 | | 3(3c+4)=8(c-2) | | 61y=30(2y+4) | | 71y=30(2+4) | | 521000+(1+x^1+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11)=9000000 |

Equations solver categories